

Unlock the world's most dynamic precision medicine network

Clinico-genomics for Cardiometabolic drug discovery and development

Accelerate research and discovery with the largest continously growing Cardiometabolic clinico-genomic registry with full patient consent for recontact

Comprehensive Whole Exome Sequencing Platform

The first and only FDA de novo class II authorized exome platform (Exome+®) optimized to be the most comprehensive and technically sensitive WES offering available.

Longitudinal Clinical Insights

De-identified, OMOP-standardized EHR integrations, including full clinical data & lab results, across North America. Regular data refreshes enable life sciences to follow the patient journey beyond an initial encounter.

Diverse Claims Data

Insights into medication usage, treatment adherence and cost of care through access to medical, pharmacy and mortality data from a partnership with Komodo Health.

Proprietary Clinico-Genomic Registry & Support

Exome+® sequencing data linked with rich longitudinal clinical data from health system partners across NA

Multi-site network protocol aggregating cohorts for a range of therapeutic areas

Geographically and genetically diverse population consented for Life Sciences recontact

World class analytical capabilities and a dedicated in-house Translational Research team

Let the power of Exome+® drive your drug discovery and development

Target Identification and Validation

New Biomarker Discovery

Evidence and Outcomes Research

Longitudinal clinico-genomic cohort of ~142k patients with diverse Cardiometabolic conditions

Cardiomyopathy

genetic factors associated with various cardiomyopathies including ATTR-CM

Lipoprotein(a)

highly prevalent lipoprotein strongly associated with CVD

Cardiometabolic custom cohort

based upon a range of inclusion and exclusion criteria

Case study: Dilated Cardiomyopathy

Characterize the relationship between different cardiac conditions in those with Titin truncating variants (TTNtvs) and identify individuals with highest risk of dilated cardiomyopathies (DCM)

EHR and Exome-based patient cohort

Two population cohorts to evaluate individually significant *TTN* gene-disease associations including DCM and Afib

Clinico-Genomic dataset analysis and insights

Interpret models fo TTNtvs across the genes and quantify cardiomyopathy risk in patients

Advancing discovery and screening

Analysis provides real-world evidence to support population screening of TTNtvs for CM